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T here are many historical stories of how the best of inten-
tions can backfire. In an apocryphal anecdote set in the
1800s, the British Raj in India recognized usually fatal co-

bra bites as a major public health issue. The solution seemed simple
and intuitive. Citizens were paid for every dead cobra delivered to
government authorities under the irrefutable logic that fewer co-
bras must translate into fewer cobra-bite deaths. Officials failed to
anticipate that their payments for dead snakes would be rapidly ex-
ploited by entrepreneurs who began breeding cobras in large num-
bers. The incentive program was abruptly discontinued when offi-
cials became aware of the scheme and breeders consequently freed
their cobras, driving the wild cobra population to unprecedented
numbers. The intended solution made the original problem worse.
Medical practice, past and present, is replete with “cobra effects”:
treatments that worsen the symptoms they were intended to re-
lieve. Herein, we cast light on a cobra effect that appears to be in
play in the treatment of tinnitus.

Tinnitus degrades the quality of life of approximately 50 mil-
lion US adults and profoundly disables and precludes a normal life
in an estimated 2 million.1,2 Few medical conditions are as person-
ally disruptive or as continuously distressing as the squeals or noises
continuously “roaring from the ears” of the patient with severe tin-
nitus. In many, excessive noise exposure with associated sensori-

neural hearing loss, ear and nerve disease conditions, high stress,
hypertension, traumatic brain injury, cumulative concussions, and
drug and chemical exposures are accumulating causes of their pri-
mary or secondary tinnitus.3 Age-related neurophysiological changes
and subclinical neurodegeneration are other identified contributors.4

At the same time, tinnitus has no obvious or immediately identifi-
able cause in 65% to 98% of cases.5 With frequent confusions about
etiology, patients are commonly referred to a variety of specialists
and health care clinics, which often address their tinnitus in unstruc-
tured ways.6

There is currently no cure for tinnitus, and approaches to treat-
ing symptoms have not been standardized across clinical practice.2,6,7

Sound therapy is a common approach for managing tinnitus
symptoms8 and was recently included among a small handful of op-
tions for addressing bothersome tinnitus in a clinical practice guide-
line published by the American Academy of Otolaryngology–Head
and Neck Surgery.7 A variety of sound therapies have been de-
ployed with the common goal of masking the tinnitus percept, many
of which implement random, broadband noise as the masking stimu-
lus. Although some evidence suggests that noise-based sound
therapy provides relief from intrusive tinnitus percepts via audi-
tory masking,9 we discuss a large and growing body of literature
documenting that unstructured, random acoustic input is capable
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of inducing maladaptive neuroplastic change throughout the cen-
tral auditory system that ultimately undermines that system’s struc-
tural and functional integrity.

In the present review, we argue that the potential adverse ef-
fects of noise-masking strategies outweigh their therapeutic poten-
tial. We further suggest that noise exposure may eventually com-
pound the maladaptive plasticity thought to underlie tinnitus, which
could worsen the neurological expressions of the tinnitus over time:
a cobra effect. We recommend against sound therapies using
unstructured acoustic noise, and consider several possible
alternatives.

Pathophysiologic Mechanism
Over the past 50 years, the emergent science of brain plasticity has
documented that the brain is capable of continuous, large-scale ana-
tomical, neurochemical, and functional change—in either an adap-
tive or maladaptive direction—across the lifespan.10 Neuroscien-
tists have reached better understanding of tinnitus within this
framework, characterizing the phantom sounds as a product of plas-
tic auditory system distortions that competitively exaggerate neu-
rological representations of tinnitus percepts.

Although the pathophysiologic mechanism underlying tinni-
tus remains incompletely understood, substantial progress has been
made within the past several decades in establishing neurobiologi-
cal hallmarks of tinnitus in animal models, with an encouraging de-
gree of agreement in the available human studies.11,12 Although most
tinnitus cases are believed to reflect peripheral hearing loss, tinni-
tus is known to persist even after lesions of the cochlear nucleus or
auditory nerve transection,13 implicating the involvement of down-
stream central structures. Extensive evidence now documents wide-
spread changes associated with tinnitus throughout the central au-
ditory pathway—from cochlear nucleus to cortex. Convergent
evidence from anatomical, physiological, and neurochemical stud-
ies suggests that the most common pathophysiologic mechanism
in animals with hearing loss and behavioral evidence of tinnitus is
net loss of inhibition.14-17 As reviewed elsewhere,18,19 this reduc-
tion in inhibitory strength reflects reduced inhibitory neurotrans-
mitter release, altered subunit composition of inhibitory neurotrans-
mitter receptors, downregulation of inhibitory synapses, and
strengthened excitatory synapses, which result in elevated spon-
taneous firing rates and neural synchrony, cortical hyperexcitabil-
ity, reduced spectral and temporal inhibition, and increased recep-
tive field bandwidth. Clinical studies in human patients are largely
consistent with these outcomes, reflecting increased gain in cen-
tral pathways,20,21 including reduced auditory cortical inhibition,22

often with evidence of cortical tonotopic reorganization.11,15,23

Temporal response precision throughout the auditory pathway,
which critically depends on excitation-inhibition balance,24 is also com-
promisedbydiminishedinhibitorytoneassociatedwithhearinglossand
tinnitus.15,25 These degraded temporal processing capabilities severely
underminecentralprocessingofcomplexamplitude-modulatedsignals
including conspecific vocalizations and speech, as well as discrimina-
tionofsignalsinnoise.Behavioralstudiesinbothanimalandhumansub-
jects suggest that these central processing deficits translate into im-
paired ability to discriminate temporal patterns and communication
signals, especially when embedded in noise.26-28

Exposure to traumatic noise, resulting in permanent elevated
peripheral tone thresholds, has long been recognized as a preva-
lent cause of central auditory dysfunction associated with tinnitus.
However, a rapidly growing body of literature, largely conducted in
animal models within the last decade, has now established that long-
term exposure to nontraumatic noise—in which peripheral tone
thresholds remain unchanged—is capable of inducing maladaptive
plastic reorganization of the central auditory nervous system in ways
that bear striking phenomenological overlap with the persistent,
widespread disinhibition of the auditory system thought to under-
lie tinnitus in humans.29,30 Specific putative physiopathologic con-
ditions associated with tinnitus that are also induced by nontrau-
matic noise exposure, even in the absence of hearing loss, include
loss of inhibitory tone through decreased expression of inhibitory
interneuron protein31 and inhibitory neurotransmitter receptor
subunits,32 increase in neural spontaneous firing, increase in spon-
taneous neural firing synchrony,30,33 tonotopic reorganization,33 in-
creased auditory cortical receptive field bandwidth and overlap,33

as well as degraded auditory cortical temporal processing and im-
paired behavioral performance in temporal rate discrimination
tasks.33 Notably, these changes have been observed following ex-
posure to noise levels in the 60 to 70 dB sound pressure level range,
typical of commercially available noise generators34 and consid-
ered “safe” by the US Occupational Safety and Health
Administration35 on the basis of preserved peripheral thresholds.
They have moreover been documented as developing in both
young32 and adult subjects,31,33 following exposures spanning as little
as a couple of months,36,37 and may persist for at least several weeks
to months after noise exposure discontinuation.31

It has been convincingly established in multiple experimental
preparations and sensory modalities that downregulation of inhi-
bition observed following sensory deprivation, peripheral damage,
or deafferentation reflects a loss of statistically meaningful input from
the sensory periphery.18,31 Compromised peripheral inhibition ini-
tiates cascading consequences that propagate to the cortex, which
in turn exacerbate rather than compensate for reduced subcortical
inhibition.19 The recent discovery that nontraumatic noise expo-
sure similarly compromises the functional integrity of the central au-
ditory pathway through net loss of inhibition fits neatly within this
general paradigm, considering that noise is statistically random by
definition. Physiological outcomes such as increased synchrony in
spontaneous firing rates and reduced spectral and temporal selec-
tivity are believed to reflect mechanisms of Hebbian plasticity re-
cruited during simultaneous, equivalent activation of central audi-
tory neurons, which occurs in both sensory deafferentation and
nontraumatic noise exposure. To the extent that these neurons “fire
together,” they “wire together,” resulting in progressive increase in
coactivation and loss of selectivity for specific spectral frequencies
and other acoustic features.32,33,38 Auditory perceptual impair-
ments observed at the behavioral level can be interpreted within the
context of degraded spectral and temporal selectivity in the audi-
tory nervous system, especially at the level of cortex.33,39

Controlled neurobiological experiments investigating non-
traumatic noise exposure thus suggest that sound therapies
implementing broadband noise may be driving patients’ brains
further toward, rather than away from, the pathological disinhibi-
tory state that has long been associated with tinnitus. Neverthe-
less, only a handful of studies have specifically examined links
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between nontraumatic noise exposure and tinnitus, likely
because the deleterious consequences of nontraumatic noise
have only recently been documented and because of ethical con-
cerns about exposing human subjects to potentially harmful
noise.40 The results of these studies have yielded only partial
agreement and are in some cases difficult to interpret for lack of
ideally suited dependent measures or experimental controls. In
1 study, animals exposed to nontraumatic noise but without evi-
dence of peripheral hearing loss exhibited all of the major puta-
tive neural correlates of tinnitus, including increased cortical
spontaneous firing rates and neural synchrony.30 Although the
authors speculated that these physiological correlates might
translate into behavioral manifestations of tinnitus, a recent
follow-up study by the same group failed to identify significant
behavioral signs of tinnitus in subjects exposed to nontraumatic
noise (50-70 dB), as assessed by the acoustic startle reflex.41 On
the other hand, another group of researchers exposing animals to
borderline-traumatic noise (97 dB) observed significant behav-
ioral signs of tinnitus using the same behavioral paradigm, even
though the exposure protocol preserved cochlear integrity.42

Studies in human subjects have similarly yielded only partially
consistent results and, moreover, carry caveats regarding lack of
rigorous experimental control over noise exposure parameters.
Thus, 1 study of patients with tinnitus but no evidence of periph-
eral hearing loss found that estimates of lifetime exposure to
noise (>80 dB) obtained through interview were significantly
higher than closely matched controls.43 Another study, however,
reported that tinnitus prevalence was significantly associated
with noise exposure only in participants with peripheral hearing
loss—not in participants with normal audiograms.44

In summary, the recent experimental efforts to understand
the consequences of nontraumatic noise exposure reviewed
herein cast doubt on the therapeutic merits of sound therapies
implementing unstructured masking noise, which are problematic
for 2 fundamental reasons. First, long-term exposure to nontrau-
matic noise is now known to produce the same anatomical, physi-
ological, and behavioral symptoms of hearing loss associated with
tinnitus. These outcomes raise the disconcerting possibility that
broadband noise exposure may be sufficient to unmask, exacer-
bate, or prolong tinnitus symptoms, even without damaging the
cochlea. Second, aside from tinnitus, hyperactivity in the central
auditory pathway induced by nontraumatic noise exposure has a
known causal role in the emergence of a host of auditory percep-
tual problems, especially those reflecting compromised temporal
processing ability, which is critical for speech comprehension and
perception of signals in noise. Concerns about the potential for
nontraumatic noise to worsen tinnitus symptoms call for detailed
investigation of key relationships among noise exposure level and
duration, physiological changes in the auditory central pathway,
and behavioral symptoms of tinnitus. For instance, it is not yet
clear whether long-term exposure to very low noise levels used in
some sound therapies (<50 dB) might be sufficient to produce
the hallmark disinhibitory syndrome resulting from levels used in
existing studies (60-70 dB). At present, however, the available
evidence reviewed herein suggests that sound therapies imple-
menting noise, while providing temporary relief by masking tinni-
tus percepts in the short term, may be adding fuel to the fire in
the long term.

Treatment: Neuroplasticity-Based Therapeutics

Fortunately, many alternative strategies are available for treating tin-
nitus that do not carry known risks for exacerbating symptoms in
the long term and are free from adverse effects known to be in-
duced by long-term exposure to unstructured noise. Herein, we fo-
cus on several recently developed approaches for tinnitus treat-
ment that harness its adaptive potential in the service of restoring
the structural and functional integrity of the central auditory sys-
tem. Thus, whereas noise pathologically undermines inhibitory con-
trol throughout the central auditory pathway, each of the treat-
ment options considered in this section are associated with
restoration of lost compromised inhibitory transmission long
believed to underlie hearing loss associated with tinnitus. Al-
though not all of these strategies have yet been tested in large hu-
man clinical trials, there is enough supportive evidence to justify their
investigation.

Sound Therapy Using Structured Acoustic Signals
Perhaps the most straightforward alternative to sound therapy with
unstructured noise is to simply replace the masking stimulus with a
structured (nonrandom) acoustic signal, such as music or speech.11,45

As noted herein, the simultaneous, random activation of the audi-
tory system by broadband stimuli results in neurons firing together
and thus wiring together. In the long term, spectral and temporal re-
ceptive fields broaden as a result of the increased capacity of one
neuron to activate another. From this perspective, it follows that ex-
posure to sounds with rich spectrotemporal structure such as mu-
sic and speech might instantiate changes in the central auditory path-
way opposite to noise, preserving or enhancing receptive field
selectivity. This hypothesis has been largely confirmed in animal stud-
ies of enriched acoustic environments featuring dynamic changes
in spectral and temporal modulation, which have reported sharp-
ened receptive fields,45 as well as facilitated recovery from and pro-
tection against the deleterious consequences of noise,46 including
reduced behavioral signs of tinnitus.47

Additional studies in humans have obtained promising results
using music that has been filtered to match an individual patient’s
tinnitus percept profile. For example, music that has been altered
or “notched” to exclude frequencies neighboring the tinnitus48 have
suppressed tinnitus-related hyperactivity via synaptic lateral inhi-
bition across the notched region.49 Another example includes acous-
tic coordinated reset neuromodulation, which randomly presents
brief tones both above and below the pitch of the tinnitus to im-
prove desynchronization and cortical map differentiation (ie, ab-
normal frequency couplings). Under this method, participants re-
ported perceived reductions of tinnitus loudness and annoyance,
and reduced oscillatory activity as measured by electroencephalo-
gram mirrored these improved clinical outcomes.50 Note that such
therapies carry additional costs to develop personalized programs
for the individual’s tinnitus symptoms. For patients who cannot af-
ford such programs, clinicians may recommend exposure to un-
modified music or speech.

Computerized Brain Training
It is now recognized that the neuroplastic processes responsible for
initiating, perpetuating, and elaborating deficits associated with
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many neurological conditions can be redirected to drive changes in
a corrective trajectory, potentially ameliorating rather than exacer-
bating symptoms.10 From this perspective, abnormally organized au-
ditory and nonauditory systems, and their associated perceptual and
cognitive deficits, should also be amenable to intensive training-
based remediation. Indeed, many promising examples of training-
induced rehabilitation have recently been reported for partially re-
storing pathological auditory cortical function associated with
traumatic hearing loss, presbycusis, or tinnitus in both animal
models51,52 and humans.53

In an initial demonstration of the potential for positively affect-
ing tinnitus by intensive training, Kallogjeri and colleagues54 ap-
plied BrainHQ’s validated progressively adaptive computerized ex-
ercises targeted at auditory speed of processing, accuracy,
sequencing, working memory, and attentional control in an open-
label, intent-to-treat randomized clinical trial in emergency work-
ers with severe bothersome tinnitus. Participants with tinnitus were
randomized to either auditory training exercises or treatment-as-
usual. Magnetic resonance neuroimaging, as well as a number of neu-
ropsychological and self-report measures, including the Tinnitus
Handicap Inventory (THI), were taken before and after an epoch of
approximately 40 hours of training. There was a numerical, al-
though not significant, reduction in THI scores in the trained group
over controls, with more than twice the number of trained partici-
pants showing a clinically meaningful reduction in THI scores (35%
vs 15%), and self-reporting an improvement in their tinnitus (50%)
or in their ability to learn and remember (70%). That is, for approxi-
mately half of trainees, tinnitus was brought under effective atten-
tional control (the percepts could be “put out of mind” at will), en-
abling a restoration of normal sleep and an amelioration of tinnitus
disruptions affecting sustained employment and more normal ev-
eryday functioning. Resting-state functional connectivity in neural
networks largely responsible for attention and cognitive control mir-
rored the behavioral gains and reliably improved at post-test in the
tinnitus trained group only.

Although a small set of tinnitus-nonspecific auditory training pro-
grams demonstrated a benefit for some patients with tinnitus in this
independent study, the mechanism of action was not through re-
mediation of the tinnitus itself but rather through secondarily af-
fected networks, most notably those involved in attentional con-
trol. Auditory exercises strengthened functional connectivity so that
the tinnitus percept was easier to ignore but did not necessarily
modify the tinnitus percept itself, thus helping individuals control
their attention to the tinnitus “from the top down.”

Stimulus Timing–Dependent Plasticity
Attentional-based brain training may be insufficient to remediate tin-
nitus for many patients. Additional computerized training exer-
cises may be needed, specifically designed to drive corrective
changes across the auditory nervous system in ways designed to
weaken or override the neurological distortions giving rise to the tin-
nitus percept, thus approaching remediation “from the bottom up.”55

If tinnitus is perpetuated by abnormally enlarged, system-
wide, cortical and subcortical representational assemblies amplify-
ing the power of tinnitus-associated sounds, then reducing the neu-
ral real estate maintaining the tinnitus should lead to a reduction in
the tinnitus percepts. Research has shown that representation of any
arbitrary frequency can be sharply reduced by applying condition-

ing strategies that produce long-term synaptic depression (LTD).56

In a recent study, Marks and colleagues57 significantly reduced symp-
toms in humans with chronic somatic tinnitus using the principles
of LTD. In a double-blind, placebo-controlled crossover study, re-
peated presentation of auditory and somatosensory bimodal stimu-
lation (targeting the fusiform cell circuit in the dorsal cochlear nucleus
at an interval shown to produce LTD in guinea pig models of tinni-
tus) significantly and cumulatively decreased perceived tinnitus loud-
ness and intrusiveness as assessed by the Tinnitus Functional In-
dex in humans. Relief from tinnitus may have been mediated by LTD
of strengthened somatosensory inputs to deafferented auditory
pathways. This approach of stimulus timing–dependent plasticity dif-
fers significantly from existing neurosensory rehabilitation ap-
proaches in that its goal is to restore auditory mapping rather than
simply compensate for negative plastic reorganization.

Vagus Nerve Stimulation
Another, albeit invasive and experimental, neuroplasticity-based
therapy is vagus nerve stimulation (VNS). Vagus nerve stimulation
eventuates in the release of acetylcholine which, when paired
with a stimulus such as a tone, increases cortical representation
of that stimulus through neuroplastic processes. In animal mod-
els, the general strategy of the VNS approach has been to induce
tinnitus, map the tonotopic organization of auditory cortex, and
pair VNS with tones other than the tinnitus-match frequencies to
normalize tonotopic map organization.58 Through competitive
reorganization, the nontinnitus maps increase in size and repre-
sentation while the tinnitus maps decrease, ultimately extinguish-
ing the tinnitus percept. In human studies that use these same
principles of paired brief electrical stimulation of the vagus nerve
with nontinnitus sounds, participants with severe chronic tinnitus
benefited from VNS as measured by the THI.59 Notable excep-
tions to this form of therapy were those who were taking medica-
tions known to interfere with instantiation of neural plasticity. A
noninvasive form VNS may well be feasible in the near future.60

Association of Tinnitus With Progressive
Downstream Cognitive Consequences
Although pathophysiologic conditions of the central auditory
pathway reviewed herein seem to be the sine qua non of
tinnitus,61 both human and animal studies reveal that the audi-
tory system distortions extend, in time, to distort nonauditory
areas in the frontal lobe, limbic and paralimbic systems, basal gan-
glion, and cerebellum.61-65 Importantly, Burton and colleagues66

documented striking abnormalities in the connectivities of net-
works controlling attention and mood, strong within-system and
significantly weakened cross-modal connectivities between audi-
tory and visual or somatomotor networks, and a complex combi-
nation of positive and abnormal connectivities with specific lim-
bic and basal ganglia areas. These studies richly manifest the
neurological bases of the neurobehavioral havoc that can degrade
the quality of life and welfare of patients with tinnitus.

Chronic tinnitus is further known to degrade processing
speed, working memory, learning, selective attention, recogni-
tion, cross-modal switching, successive signal masking, verbal
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learning, phonemic verbal fluency, memory recording and
retrieval, and sustained auditory and nonauditory attention.67-72

These impacts on brain speed, attentional control, and cross-
modal integration contribute to behavioral deficits that extend far
beyond hearing and language. Tinnitus sharply increases the risks
of suicide, major depressive and anxiety disorders, intractable
insomnia, social avoidance, unemployment, and other fundamen-
tal contributors to a negative quality of life.73,74 It also may fore-
tell a premature passage to age-related dementia onset.4,75 Tinni-
tus, as well as noise-masking treatments, may thus not only
undermine the organic health status of the brain but also under-
mine cognition more broadly.

Conclusions
A noisy environment produces a noisy brain. Yet current clinical prac-
tice includes the use of random-noise generators as a therapeutic

treatment for tinnitus. Such signals are known to dedifferentiate cells
comprising the auditory pathway and thus maximize the likelihood
of continuance or recurrence of neurological dysfunction and cog-
nitive impairment.

Effective, long-term therapeutic solutions for tinnitus will
ultimately depend on a clear understanding of neuroplasticity in
the central auditory system. At present, we suggest that such
neuroplasticity-based interventions will include (1) restrengthen-
ing of central inhibitory processes in ways that restore normal,
healthy auditory function, (2) reorganization of the auditory path-
way in ways that de-exaggerate neurological representations of
tinnitus percept frequencies, and (3) strengthened general cogni-
tive resources to facilitate the voluntary attentional suppression
of tinnitus. With exciting developments currently under way, we
envisage a new era in medicine in which disease is understood in
the context of brain health and treatment is guided by well-
established principles of neuroplasticity. Only then shall we do no
harm.
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